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ABSTRACT  

Computational Morphology is an urgent problem for Arabic Natural Language Processing, because 

Arabic is a highly inflected language.  We have found, however, that a full solution to this problem is 

not required for effective information retrieval.  Light stemming allows remarkably good information 

retrieval without providing correct morphological analyses.  We developed several light stemmers for 

Arabic, and assessed their effectiveness for information retrieval using standard TREC data. We have 

also compared light stemming with several stemmers based on morphological analysis.. The light 

stemmer, light10, outperformed the other approaches. It has been included in the Lemur toolkit, and is 

becoming widely used Arabic information retrieval.  
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1. INTRODUCTION 

The central problem of information retrieval (IR) is to find documents that satisfy a user’s information 

need, usually expressed in the form a query.  This active research area has seen great progress in recent 

decades, which everyone has experienced in searching the internet.  Initially, most IR research was 

carried out in English and fueled by the annual Text Retrieval Conferences (TREC) sponsored by NIST 

(the National Institute of Standards and Technology). NIST has accumulated large amounts of standard 

data (text collections, queries, and relevance judgments) so that IR researchers can compare their 

techniques on common data sets.  More recently, IR research involving other languages has flourished.  

TREC now includes multilingual data and in recent years, other organizations sponsor similar annual 

evaluations for European languages (CLEF) and Asian languages (NTCIR) (Chinese, Japanese, and 

Korean).  Arabic began to be included in the TREC cross-lingual track in 2001, and in the TDT (topic 

detection and tracking) evaluations in 2001 [48]. The availability of standard Arabic data sets from the 

NIST and the Linguistic Data Consortium (LDC) has in turned spurred a huge acceleration in progress in 

information retrieval and other natural language processing involving Arabic. 

Any discussion of multilingual retrieval requires a distinction between monolingual retrieval in multiple 

languages, and crosslingual or cross-language retrieval.  In monolingual retrieval, queries are issued in 

the same language as the documents in the collection being searched.  In cross-lingual retrieval, queries 

are issued in a different language than the documents in the collection.  A central problem in both 

monolingual and crosslingual streams of IR research is the vocabulary mismatch problem.  The same 

information need can be expressed using different terminology (the disease bilharzia is also called 

schistosomiasis), or a key term can have different spellings (e.g. theater vs. theatre), or may be inflected 

differently in the query than in the relevant documents.  We discuss in section 1.1  the kinds of 

variability that lead to a particularly acute vocabulary mismatch problem in Arabic information retrieval. 
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Morphological variation in IR has generally been handled by stemming, an unsophisticated but effective 

approach to morphology which we discuss in section 1.2.  

1.1 Arabic Morphology and Orthography 

The morphology complexity of Arabic makes it particularly difficult to develop natural language 

processing applications for Arabic information retrieval. In Semitic languages like Arabic, most noun, 

adjective, and verb stems are derived from a few thousand roots by infixing, for example, creating words 

like maktab (office), kitAb (book), kutub (books), kataba (he wrote), and naktubu (we write), from the 

root ktb [57]. 

Arabic is highly productive, both derivationally and inflectionally.  Definite articles, conjunctions, 

particles and other prefixes can attach to the beginning of a word, and large numbers of suffixes can 

attach to the end. A given headword can be found in huge number of different forms. Distributional 

analyses of Arabic newspaper text show empirically that there is more lexical variability in Arabic than 

in the European languages for which most IR and NLP work as been performed.  Arabic text has more 

words occurring only once and more distinct words than English text samples of comparable size.1 The 

token to type ratio (mean number of occurrences over all distinct words in the sample) is smaller for 

Arabic texts than for comparably sized English texts [28]. 

Arabic orthography also contributes variability that can confuse information retrieval systems.  It is not 

the right to left order of the characters, or the context-dependence of the appearance of the characters 

that are problematic.  These are just rendering issues.  However, the underlying stream of characters to 

be rendered can vary a great deal, in that Arabic can be written with or without the diacritics indicating 

                                                 

1 We use the term word in simple sense of text segmented at white space or punctuation, without any morphological analysis. 
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short vowels.  For example, ���ََآ  and  آ�� (kataba and ktb) look similar to the eye, but to the computer, 

they do not match.  Orthography with diacritics is less ambiguous and more phonetic, but diacritics are 

only found in specialized contexts, such as children's books, dictionaries, and the Qur'an.  Short vowels 

are generally not included in the texts like newspapers which make up so much of what is searched.  

Because of this, some normalization, like the removal of diacritics, is typically performed in IR systems.  

In contrast, many morphological analyzers attempt to insert the missing short vowels and other 

diacritics. 

For information retrieval, this abundance of forms, lexical variability, and orthographic variability, all 

result in a greater likelihood of mismatch between the form of a word in a query and the forms found in 

documents relevant to the query.   In cross-language retrieval there is an additional serious mismatch 

problem between query terms and the forms found in the bilingual dictionaries that are used in cross-

language retrieval. 

1.2 Stemming in Information Retrieval 

Stemming is another one of many tools besides normalization that is used in information retrieval to 

combat this vocabulary mismatch problem.  Stemmers equate or conflate certain variant forms of the 

same word like (paper, papers) and (fold, folds, folded, folding…). In this work, we use the term 

stemming to refer to any process which conflates related forms or groups forms into equivalence classes, 

including but not restricted to suffix stripping.  In this section we review general approaches to 

stemming over many languages.  We focus on Arabic in the next section.  Most approaches fall into two 

classes: affix removal and statistical stemming. 
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1.2.1 Affix Removal 

In English and many other western European languages, stemming is primarily a process of suffix 

removal [42][51]. Such stemmers do not conflate irregular forms such as (goose, geese) and (swim, 

swam). These stemmers are generally tailored for each specific language.  Their design requires some 

linguistic expertise in the language and an understanding of the needs of information retrieval.  

Stemmers have been developed for a wide range of languages including Malay [55], Latin [29], Indone-

sian [8], Swedish [12] Dutch[35], German [45], French [46], Slovene [50], and Turkish [21]. The 

effectiveness of stemming across languages is varied and influenced by many factors.  A reasonable 

summary is that stemming doesn’t hurt retrieval; it either makes little difference or it improves 

effectiveness by a small amount [31]. Stemming is considered to aid recall more than precision  [35].  

That is, stemming allows a search engine to find more relevant documents, but may not improve its 

ability to rank the best documents at the top of the list. Stemming appears to have a larger positive effect 

when queries and/or documents are short [36], and when the language is highly inflected[49][50], 

suggesting that stemming should improve Arabic information retrieval. 

1.2.2 Statistical Techniques 

Statistical methods can provide a more language-independent approach to conflation. Related words can 

be grouped based on various string-similarity measures.  Such approaches often involve n-grams.  

Equivalence classes can be formed from words that share word-initial letter n-grams or a threshold 

proportion of n-grams throughout the word, or by refining these classes with clustering techniques. This 

kind of statistical stemming has been shown to be effective for many languages, including English, 

Turkish, and Malay [21][23][24][47].   

Statistical techniques have widely been applied to automatic morphological analysis in computational 

linguistics [9][17][22] [26][27] [30][32][34].  For example, Goldsmith finds the best set of frequently 
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occurring stems and suffixes using an information theoretic measure [26]. Oard et al. consider the most 

frequently occurring word-final n-grams (1, 2, 3, and 4-grams) to be suffixes [47].   

Stem classes can also be built or refined using co-occurrence analysis, which Xu and Croft proposed as a 

promising language-independent approach to stemming [58].  Stemmers make two kinds of errors.  

Weak stemmers fail to conflate related forms that should be grouped together.  Strong stemmers tend to 

form larger stem classes in which unrelated forms are erroneously conflated.  Most stemmers fall 

between these two extremes and make both kinds of errors.  Xu and Croft employ a corpus analysis 

approach which is particularly suited to splitting up stem classes created by strong stemmers. The stem-

classes are reclustered based on a co-occurrence measure, which is language independent in that it can be 

applied to any set of stem classes. Xu and Croft applied their technique to effectively stem English and 

Spanish and obtained two important results. First, one can refine an already-good stemmer by co-

occurrence analysis and improve retrieval effectiveness.  Second, one can start with a strong crude 

stemmer like an n-gram stemmer and use co-occurrence analysis to yield stem classes that work as well 

as a sophisticated stemmer.  They demonstrated an improvement in retrieval effectiveness for English 

and Spanish after clustering conventional and n-gram based stem classes.   

 

1.3 Stemming and Morphological Analysis in Arabic for Information Retrieval 

The factors described in section 1.1 make Arabic very difficult to stem.  The issue of whether roots or 

stems are the desired level of analysis for IR has been one complication that has given rise to additional 

approaches to stemming for Arabic besides affix removal and the statistical stemming approaches 

                                                 

3 All significance tests were conducted using the Wilcoxon test [53]  with a criterion of p<.05 for significance. 



 7 

described above.  Other approaches include manual dictionary construction, morphological analysis, and 

new statistical methods involving parallel corpora.  

1.3.1 Manual construction of dictionaries  

Early work on Arabic stemming used manually constructed dictionaries. Al-Kharashi and Evens worked 

with small text collections, for which they manually built dictionaries of roots and stems for each word 

to be indexed [4]. This approach is obviously impractical for realistic sized corpora. 

1.3.2 Affix Removal 

The affix removal approach is generally called light stemming when applied to Arabic, referring to a 

process of stripping off a small set of prefixes and/or suffixes, without trying to deal with infixes, or 

recognize patterns and find roots.  Light stemming was used for Arabic by some authors without details 

in work prior to ours [3][18].  No explicit lists of strippable prefixes and/or suffixes or algorithms had 

been published at the time we did this research.  Our light stemmer, light10, strips off initial و (and), 

definite articles ( ) and suffixes (  ��ال، وال، �	ل، آ	ل، 
	ل، ��، ��، ��، �،  ة،  ي ه	، ان، ات، ون،  

). (More detail can be found in section 2.2.) It was designed to strip off strings that were frequently 

found as prefixes or suffixes, but infrequently found at the beginning or ending of stems. It was not 

intended to be exhaustive.  Darwish introduced the Al-Stem light stemmer at TREC 2002 [16], and 

demonstrated that it was less effective than light10.  Chen and Gey [13] introduced a light stemmer 

similar to light10, but that removed more prefixes and suffixes.  It was shown to be more effective than 

Al-Stem, but was not directly compared to light10.  

Although light stemming can correctly conflate many variants of words into large stem classes, it can fail 

to conflate other forms that should go together. For example, broken (irregular) plurals for nouns and 

adjectives do not get conflated with their singular forms, and past tense verbs do not get conflated with 
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their present tense forms, because they retain some affixes and internal differences.  In spite of its 

simplicity and shortcomings, no more sophisticated approach has been shown to be more effective for 

information retrieval.   

 

1.3.3 Statistical Stemming 

Although n-gram systems have been used for many different languages, one would not expect them to 

perform well on infixing languages like Arabic.  However, Mayfield et al. have developed a system that 

combines word-based and 6-gram based retrieval, which performs remarkably well for many languages 

[44] including Arabic [43].   

De Roeck and Al-Fares [18] used clustering on Arabic words to find classes sharing the same root.  

Their clustering was based on morphological similarity, using a string similarity metric tailored to 

Arabic morphology, which was applied after removing “a small number of obvious affixes.”  They 

evaluated the technique by comparing the derived clusters to “correct” classes.  They did not assess the 

performance in an information retrieval context.   

We applied Xu and Croft's co-ocurrence method to Arabic [58].  We assumed that initial n-gram based 

stem classes were probably not the right starting point for languages like Arabic. However, co-

occurrence or other clustering techniques can be applied to Arabic without using n-grams. Instead, we 

formed classes of words that mapped onto the same string if vowels were removed, and used co-

occurrence measures to split these classes further. The co-occurrence method did not work as well for 

Arabic as it did for English and Spanish. It did not produce a stemmer that worked as well as light10. 

We found that while one could improve a mediocre stemmer with this technique, its effectiveness was 

still far from the level attained by a high-quality stemmer like light10. And the light10 stemmer could 
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not further improved by co-occurrence analyses. Perhaps this is because of the big stemming effect in 

Arabic compared to English or Spanish. 

A promising new class of statistical stemmers makes use of parallel corpora.  Chen and Gey [13] used a 

parallel English-Arabic corpus and an English stemmer to cluster Arabic words into stem classes based 

on their mappings to English stem classes.  Rogati, McCarley, and Yang [52] use a statistical machine 

translation approach that learns to split words into prefix, stem, and suffix by training on a small hand 

annotated training set and using a parallel corpus  These approaches work well considering how 

automated they are, but they are not as effective in an IR evaluation as a good light stemmer. 

1.3.4 Morphological Analysis 

It is often assumed that stemming is just a quick and dirty way to approximate morphological analysis, 

and that the best way to stem would be to perform a correct morphological analysis and then use some 

valid morphological unit for indexing and retrieval.  For Arabic, this unit has often been thought to be 

the root. Several morphological analyzers have been developed for Arabic [2][6][7][15][33][19] but few 

have received a standard IR evaluation  Most such morphological analyzers find the root, or any number 

of possible roots for each word.  A morphological analyzer call Sebawai, developed by Kareem Darwish 

[14] was used by some of the TREC participants in 2001 [15][33], but it was not directly compared with 

light stemming.   

In our earlier research we evaluated a simple morphological analyzer from Khoja and Garside [33], 

which first peels away layers of prefixes and suffixes, then checks a list of patterns and roots to 

determine whether the remainder could be a known root with a known pattern applied. If so, it returns 

the root. Otherwise, it returns the original word, unmodified.  This system also removes terms that are 

found on a list of 168 Arabic stop words. It was almost as effective as light stemming, but tended to fail 
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on foreign words, which it left unchanged rather than removing definite articles and obvious affixes. 

Taghva, Elkhoury, and Coombs [54] have developed a system that finds Arabic roots somewhat like 

Khoja's approach, but without using a root dictionary or lexicon, and which performs as well as a light 

stemmer. 

Tim Buckwalter's morphological analyzer [10] is different from the others in that it returns stems rather 

than roots.  It is based on a set of lexicons of Arabic stems, prefixes, and suffixes, with truth tables 

indicating their legal combinations. The BBN group used this table-based stemmer in TREC-2001 [59], 

but did not compare it with light stemming. The Buckwalter stemmer is now available from LDC [40], 

and is evaluated as a stemmer in the present study.  Finally,   Diab, Hacioglu, and Jurafsky [20] 

developed a set of tools for Arabic morphological analyses which learn tokenization, lemmatization, 

part-of-speech assignment, and phrase chunking, automatically using SVM (support vector machines), a 

machine learning categorization tool.  Their tools are trained on a sample of the Arabic Tree Bank[41], 

which is a portion of the AFP database which has been analyzed by the Buckwalter morphological 

analyzer, and hand-corrected.  They claim above 99% accuracy on tokenization, and 95.49% accuracy on 

POS tagging. We derive some stemmers from these tools, as part of the present study. 

Early published comparisons of stems vs. roots for information retrieval have claimed that roots are 

superior to stems, based on small, nonstandard test sets [1][4]. Recent work at TREC has found no 

consistent differences between roots and stems [15].  We found a small increase in effectiveness when 

we combined roots and stems [39].  However, we feel that roots vs stems is not the most interesting 

question to investigate.  As this book makes clear, morphological analysis of Arabic is now an active 

research area, and many systems are being developed to return more complete analyses of Arabic words. 

A more interesting question is how to use morphological analysis to aid information retrieval, and in 
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particular, to aid stemming. The new work in this chapter is attempts to use morphological analysis to 

get to something better than a root for indexing. 

The present study expands upon work we published at SIGIR in 2002 [38]. At that time, we developed 

several light stemmers, compared their effectiveness on an IR task with each other and with that of a 

morphological analyzer available at that time.  We also experimented with a co-occurrence approach to 

improving stemming.  The present research expands that study in several ways.  First, the light stemmer 

we eventual settled upon (and used in TREC 2002) was slightly different from the best one reported at 

SIGIR. We compare it with the other stemmers here. Second, we use 75 queries from TREC 2001 and 

TREC 2002 to evaluate stemmers here, providing results that are more reliable than the 25 queries from 

TREC 2001 used in the previous study.  Third, we evaluate stemming approaches based on two 

morphological analyzers that were not available when the earlier study was carried out. 

 

2. REVIEW OF 2002 STEMMING EXPERIMENTS 

In this section we review the light stemming experiments from the SIGIR article, but include in addition 

the modified stemmer, light10.  This set of experiments was carried out using the TREC 2001 corpus 

and queries. 

2.1 Experimental Method 

The TREC-2001 Arabic corpus, also called the AFP_ARB corpus, consists of 383,872 newspaper 

articles in Arabic from Agence France Presse.  This fills up almost a gigabyte in UTF-8 encoding as 

distributed by the Linguistic Data Consortium.  There were 25 topics with relevance judgments, 

available in Arabic, French, and English, with Title, Description, and Narrative fields [25]. We used the 
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Arabic titles and descriptions as queries in monolingual experiments, and the English titles and 

descriptions in cross-language experiments. 

Corpus and queries were converted to CP1256 encoding and indexed using an in-house version of the 

INQUERY retrieval engine [11]. Arabic strings were treated as a simple string of bytes, regardless of 

how they would be rendered on the screen.  Text was broken up into words at any white space or 

punctuation characters, including Arabic punctuation.  Stop words were removed, using a stop word list 

from Khoja [33]. Words of one-byte length (in CP1256 encoding) were not indexed.  The experiments 

reported here used INQUERY for retrieval. 

Except for the raw condition, in which no normalization or stemming was used, the corpus and queries 

were normalized according to the following steps: 

• Remove punctuation 

• Remove diacritics (primarily weak vowels).  Some entries contained weak vowels, in particular, 

the dictionaries used in cross-language experiments.  Removal made everything consistent. 

• Remove non letters 

• Replace P , إ , and أ  with ا  

• Replace final ى with ي 

• Replace final ة  with W 

 

For the normalized conditions and the stemming conditions, we normalized and stemmed all tokens 

before indexing the corpus, and normalized and stemmed the queries with the same stemmer for 

retrieval. Arabic queries were expanded using the technique of local context analysis, adding 50 terms 
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from the top 10 documents, as described in detail in [39].  Expansion was performed in order to show 

the ultimate level of performance attainable using the stemmers in the context of our whole system. 

 

 

2.2 Light Stemmers 

Our guiding principle in designing the light stemmers was heuristic.  A light stemmer is not dictionary 

driven, so it cannot apply a criterion that an affix can be removed only if what remains is an existing 

Arabic word.  In fact, we suspect that part of the success of such stemmers is that they can blindly work 

on words even if they are not found in a word list. The attempt was to was to try to remove strings which 

would be found reliably as affixes far more often than they would be found as the beginning or end of an 

Arabic stem without affixes.  We also benefited from discussions with some colleagues at TREC-2001, 

particularly M. Aljlayl. We tried several versions of light stemming, all of which followed the same 

steps: 

1. Remove و (“and”) for light2, light3, and light8, and light10 if the remainder of the word is 3 or 
more characters long.  Although it is important to remove و, it is also problematic, because many 
common Arabic words begin with this character, hence the stricter length criterion here than for 
the definite articles. 

2. Remove any of the definite articles if this leaves 2 or more characters.  
3. Go through the list of suffixes once in the (right to left) order indicated in Table 1, removing any 

that are found at the end of the word, if this leaves 2 or more characters. 
 

The strings to be removed are listed in Table 1. The “prefixes” are actually definite articles and a 

conjunction.  The light stemmers do not remove any strings that would be considered Arabic prefixes.  
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Table 1: Strings removed by light stemming 

 Remove prefixes Remove Suffixes 

Light1 ال، وال، ��ل، آ�ل، ��ل none 

Light2 ال، وال، ��ل، آ�ل، ��ل، و  none 

Light3 “ ،
 ة 

Light8 “ ة،  ي  ،
 ، ه�، ان، ات، ون، ��، ��، �

Light10 ،و، �� آ�ل، ��ل،ال، وال، ��ل   “ 

 

2.3 Results of Monolingual Stemmer Comparisons 

Figure 1 shows precision at 11 recall points for the primary stemmers tested.  Raw means no 

normalization or stemming. Norm refers to normalization with no stemming. Light1, Light2, Light3, 

Light8, and Light10  refer to the light stemmers described above.   
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Figure 1: Monolingual 11 point precision for basic stemmers, unexpanded queries 
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Table 2: Monolingual average precision for basic stemmers, unexpanded 

Stemmer raw norm light1 light2 light3 light8 light10 

Average Precision .196   .241 .273 .291 .317 .390 .413 

Percent Change  22.9 39.3 48.3 61.8 98.7 100.1 

 

Table 2 shows uninterpolated average precision for the basic stemmers.  For raw, normalized, and light 

stemming conditions performance is better with each successive increment in degree of stemming.  Each 

of these increments is statistically significant except light10 vs light8.3  As these results indicate, light 

stemming is remarkably effective.  Light10 has become widely used, and has been included in the Lemur 

toolkit, a set of software tools for research in language modeling and information retrieval [5]. 

 

2.4 Comparison with Morphological Analysis 

The Khoja stemmer described in 1.3 was used to find roots for indexing and retrieval.  Average precision 

for the Khoja stemmer is .341, significantly worse than light10 (p<.01). A comparison of this approach 

with a raw, normalized, and light2 and light10 stemmers can be seen in Figure 2.  A similar experiment 

with query expansion showed similar results, seen in Figure 3.  In Figure 3, Raw is the original raw 

condition with unexpanded queries, and RawExp refers to the raw condition with query expansion. As 

expected, average precision is higher with expanded queries, but the same pattern of results holds.  In 

particular, the light10 stemmer is significantly more effective than the khoja stemmer.   
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Figure 2: Khoja morphological analyzer vs light stemming, unexpanded queries 
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Figure 3: Khoja morphological analyzer vs light stemming, expanded queries 

2.5 Cross-language retrieval 

The Khoja morphological analyzer was also compared with the stemmers in a cross-language retrieval 

experiment, for generality. The cross-language experiments reported here were carried out using the 25 
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English TREC-2001 queries and the same Arabic AFP_ARB corpus used for the monolingual 

experiments.  Our approach was the common dictionary-based approach, in which each English query 

word was looked up in a bilingual dictionary.  All the Arabic translations for that word were gathered 

inside an INQUERY #syn (synonym) operator.  For an Arabic-English dictionary, we used a lexicon 

collected from several online English-Arabic and Arabic-English resources on the web, described more 

completely in [39].  Query expansion was carried out in conjunction with stemming.  When English 

queries were expanded, 5 terms were added from the top 10 documents.  When Arabic queries were 

expanded, 50 terms were added from the top 10 documents, as described [39]. 

Figure 4 shows precision on unexpanded queries for cross-language retrieval at 11 recall points for raw, 

norm (normalization and stop word removal), light10 (light10 stemming with stop word removal), and 

khoja stemmers. Figure 5 shows the same information for retrieval with query expansion. Table 3 shows 

uninterpolated average precision for unexpanded and expanded queries. 
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Figure 4: Cross-Language 11 point precision for unexpanded queries. 
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Figure 5: Cross-language 11 point precision for expanded queries 

 

Table 3:  Cross-language average precision different stemmers, unexpanded and expanded queries 

Stemmer raw norm khoja light10 

Average Precision .113    .262 .260 .384 

Percent Change  133 130 240 

With English Query Expansion 

Average Precision .139 .306 .308 .425 

Percent Change  120 121 206 

With English and Arabic Query Expansion 

Average Precision .163 .336 .321 .447 
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Percent Change  106 97 174 

 

The cross-language results are somewhat different from the monolingual results in comparing the light 

stemmers with the Khoja morphological analyzer. Raw retrieval without any normalization or stemming 

is far worse for cross-language retrieval than for monolingual retrieval.  This is probably because many 

of the Arabic words occurred in vocalized form (with diacritics) in the online dictionary we used for 

cross-language retrieval. Without normalization these dictionary entries do not match their counterparts 

in the corpus.  Other differences from the monolingual case are that the light10 stemmer is far better than 

the root stemmer, khoja, which is no better than normalization for cross-language retrieval. For cross 

lingual retrieval, roots are probably even less appropriate as look-up units than they are for monolingual 

retrieval.  In cross-lingual retrieval based on dictionary look-up, if we look up the root for each query 

word, we get far too many translations, and most of them are incorrect. 

2.6 Discussion 

Although stemming is difficult in a language with complex morphology like Arabic, it is particularly 

important.  For monolingual retrieval, we saw around 100% increase in average precision from raw 

retrieval to the best stemmer. The best stemmer in our experiments, light10, was very simple and did not 

try to find roots or take into account most of Arabic morphology.  It is probably not essential for the 

stemmer to yield the correct forms, whether stems or roots.  It is sufficient for it to group together most 

of the forms that belong together. 

3. NEW STUDIES OF STEMMING VIA MORPHOLOGICAL ANALYSIS 

Since 2002, more morphological analysis tools have become available.  It is also clear that there are 

probably better ways to use morphological analysis in stemming than simply to use the roots for 



 20 

indexing.  In this part of the chapter, we report research on using the Buckwalter morphological 

analyzer, and the Diab tokenizer and part of speech tagger to aid the stemming process.  

 

3.1 Buckwalter Morphological Analyzer 

Tim Buckwalter's morphological analyzer has been made available through the Linguistic Data 

Consortium (LDC)  [40].  It takes as input Arabic words with or without short vowels and performs 

morphological analysis and POS tagging using three dictionaries and three compatibility tables.  The 

three dictionaries list possible prefixes, Arabic stems, and possible suffixes.  The three compatibility 

tables indicate (1) compatible prefix/stem category pairs, (2) compatible prefix/suffix category pairs, and 

(3) compatible stem/suffix category pairs.  The analyzer performs tokenization, word segmentation, 

dictionary lookup, compatibility checks, and lists all the possible analyses of each word. For example, 

for the word ���	�� :(Al$mAlyp in Buckwalter transliteration), we get the following output ا�

 

INPUT STRING: ���	�� ا�

LOOK-UP WORD: Al$mAlyp 

  SOLUTION 1: (Al$amAliy~ap) [$amAliy~_1] [$amAliy~] Al/DET+$amAliy~/ADJ+ap/NSUFF_FEM_SG 

     (GLOSS): the + north/northern + [fem.sg.] 

  SOLUTION 2: (Al$imAliy~ap) [$imAliy~_1] [$imAliy~] Al/DET+$imAliy~/ADJ+ap/NSUFF_FEM_SG 

     (GLOSS): the + leftist + [fem.sg.] 

 

Note that the second field in square brackets in each solution line is one we added to the morphological 

analyzer program, AraMorph.pl, to give the stem in a form that is more useful to us.  The example 

illustrates some interesting properties of the analyzer.  Although much of our corpus does not include 

short vowels, the analyses have short vowels.  In fact, the stems yielded by the two different solutions 

above differ only in the short vowels. 
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It is straightforward to use this morphological analysis for stemming, because it analyses tokens into up 

to three parts: prefix, stem, and suffix.  To stem we simply remove all prefixes and suffix and use the 

remaining stems, normalized to be comparable to our light stemmers.  A potential problem is in dealing 

with multiple different analyses for the same word. However, once short vowels were removed and other 

normalization was performed, many of the different analyses actually yielded the same stem.  In the 

example above, the two different stems, $amAliy~ and $imaliy~, both become the same stem, $mly, after 

normalization. Ultimately, the vast majority of words had unique stems. In one sample of 18,035 words, 

14,878 (82%) were found to have exactly one solution, 2322 (16%) had more than one solution, and 829 

(less than 1%) had no solution.  

In particular, the following steps were performed on each file of the AFP_ARB corpus: 

1.  Run the modified version of AraMorph.pl, to find all the analyses for each word 

2.  Normalize each stem in each solution by removing short vowels, converting all forms of alif to bare 

alif, and changing alif maksoura ( ى)  to yeh (ي). 

3.  If there is exactly one normalized stem, replace the word with the stem.  If there were no solutions 

found, or more than one distinct normalized stem, use the normalized form of the original word. 

To address the problem of what to do if the morphological analyzer gave more than one possible stem, 

Xu, Fraser, and Weischedel [60] implemented a system that used both analyses when a word had more 

than one solution, but found the results were not significantly different from one that leftt words with 

multiple analyses unstemmed.  We decided to implement a second version of a Buckwalter-based 

stemmer (Buckwalter+) that applied light10 to words if the analyzer found zero or more than one 

analyses. 
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3.2 Diab Tokenizer, Lemmatizer and POS Tagger  

The Diab morphological analysis tools are available for download on the internet.  Their distribution 

ArabicSVMTools [19] includes the models they trained, which we used without training our own 

models.  Their tokenization segments clitics (prepositions, conjunctions, and some pronouns) from 

stems, and the part of speech tagger labels each segment with one of 24 parts of speech from a tag set 

collapsed from the 135 tags created by Buckwalter’s AraMorph.  We noted, first of all, that the 

tokenization part of the process separates some of the same segments that a stemmer should remove – it 

separates و (w) from the beginnings of words, and determiners like ال (Al). It also separates some 

prepositions like  ب (b) and  ل (l), which light10 does not do, unless they precede ال  (Al).   It also 

separates some suffixes, like possessive pronoun enclitics.  The POS tagger then tags these segments 

with a POS label, which lets us identify closed-class segments and remove them to accomplish stopword 

removal.  It also allows us to remove additional suffixes contingent on part of speech. 

To use the tagger for stemming, we first modified our query and corpus files to contain one sentence per 

line, because the analyzer operates on sentences.  We then ran the tokenizer, lemmatizer, and POS tagger 

on the sentences,    We removed segments with the following tags: CC, DT, RP, PRP, PRP$, CD, IN, 

WP, WRB, PUNC, NUMERIC_COMMA (conjunction, determiner, particle, personal pronoun, 

possessive personal pronoun, cardinal number, subordinating conjunction or preposition, relative 

pronoun, wh-adverb, punctuation).    This amounts to a much weaker stemmer than light10, because it 

removes almost no suffixes.  Therefore we tested three other stemmers derived from this morphological 

analyzer.    Our goal was to remove possible plural and dual endings only from words identified as plural 

nouns and adjectives.  Unfortunately, while singular and plural nouns (and singular and plural proper 

nouns) received distinct tags, adjectives all received the same tag, JJ, so we could not easily determine 

which were plural or dual.  Therefore, we tried two versions of plural suffix removal, described below as 
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Diab2 and Diab3.  In an analogue to the Buckwalter+ condition, in which we blindly performed light10 

stemming if a word did not yield a unique stem, we also have a Diab+ condition, in which we remove 

light10 suffixes regardless of part of speech. 

 

To summarize the 4 stemmers derived from the morphological analysis tools: 

 

Diab:  tokenization, morphological analysis, remove closed class segments 

Diab+:  Diab , then remove light10 suffixes 

Diab2: Diab, then remove possible plural and dual endings (At, wn, yn, w, An, w, y) from segments 

marked as plural nouns or plural proper nouns 

Diab3:  Diab, then remove (At, wn, yn, w, An, w, y, yp, p) from any segments marked as nouns or 

adjectives. 

   

3.3 Comparison of new morphological stemmers with light stemmer 

These experiments were carried out in much the same way as those in section 2.3, except for a larger 

query set.  In addition to the 25 queries from TREC2001, there were 50 queries from TREC2002 for a 

total of 75.  The same Arabic corpus was used for retrieval.  Figure 6 and Figure 7 show monolingual 

retrieval for the 75 queries.  Table 4 shows average precision for all the stemming conditions tested, with 

and without query expansion.  The boldface type indicates that the average precision was significantly 

worse than the corresponding light10 condition. 
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Figure 6: Monolingual 11 point precision for 75 unexpanded queries 
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Figure 7:  Monolingual 11 point precision for 75 expanded queries 
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Table 4:  Average Precision for 75 expanded queries, comparison of morphological stemmers with 

light10 

Stemmer Light10 Buckwalter Buckwalter+ Diab Diab2 Diab3 Diab+ 

Unexpanded .353 .330 .334 .247 .257 .302 .302 

Expanded .387 .386 .390 .322 .336 .354 .356 

   

Without query expansion, all of the morphological analysis conditions are significantly worse than 

light10.   With query expansion, the Buckwalter stemmers equal the performance of light10.  For both 

expanded and unexpanded queries, all the Diab stemmers are significantly worse than the Buckwalter 

stemmers. Diab+ and Diab3 were almost identical, that is, blindly removing the set of light10 suffixes 

from all words gives the same performance as removing suffixes from nouns and adjectives.  Diab+ and 

Diab3 were significantly better than Diab2, which is significantly better than Diab.   

 

 The poor performance of the basic Diab stemmer is not surprising - it is performing stemming that is 

most comparable to light3 in section 2.3.  But we expected it to be more improved by POS dependent 

suffix removal, and by its more complete stop word removal.  An examination of the query set and a 

sample AFP article after tokenization and POS tagging showed more tokenization mistakes than we 

expected.  For example, the tokenizer sometimes did not separate the definite article ال (Al).   

The queries were made up of a non-sentence (title) line, followed by one to three sentences of 

description, as in Table 5 and Table 6.  Because the tokenizer was trained on complete sentences, it did 

not work well on titles.  It often failed to segment Al when the first word of a title was a noun, as in 
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Table 5.  Table 6 shows an example of incorrect segmentation of  b from the front of a word in a title, 

but not in the complete sentence. 

 

 

Table 5: Example of Tokenization, TREC 2002 query AR30 

 Title Description 

English Iraqi satellite television What is the importance of 
satellite television in Iraq? 

Arabic اقOPا� Q RS	TUن ا�V�WUXن  ا��V�WUXا�� ��Yا 	Z
 ا�TU	Q RS ا�OPاق؟

Transliterated Altlfzywn AlfDA}y fy AlErAq mA Ahmyp Altlfzywn AlfDA}y 
fy AlErAq? 

Tokenized Altlfzywn  Al  fDA}y  fy Al  ErAq mA  Ahmyp Al  tlfzywn  Al  
fDA}y  fy  Al  ErAq? 

 

 

 

Table 6: Example of Tokenization, TREC2002 query AR32 

 Title Description 

English Caspian Beluga Conservation What Beluga conservation 
projects are present in the 
Caspian region? 

Arabic و��W\O] Q 	^VX� �_	�`  �_	ص�� bر�	�dا Rه 	Z
 ا�^VXe	 W\ O] Qو��؟

Transliterated SyAnp  blwgA  fy  bHrqzwyn mA hy Alm$AryE lSyAnp 
AlblwgA  fy  bHr  qzwyn 

Tokenized SyAnp  b  lwgA  fy   bHrqzwyn mA hy Al  m$AryE  l  SyAnp Al  
blwgA  fy  bHr  qzwyn 

 

Performance was hurt by these tokenization errors.  Note in the two examples that the tokenization errors 

were serious - they occurred in important content words in the query, but the same words were correctly 
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tokenized in the description part of the query. Performance would have been hurt even more on title-only 

queries.  

4. CONCLUSIONS 

Stemming has a large effect on Arabic information retrieval, far larger than the effect found for most 

other languages.  For monolingual retrieval we have demonstrated improvements of around 100% in 

average precision due to stemming and related processes, and an even larger effect for dictionary-based 

cross-language retrieval.  This stemming effect is very large, compared to that found in many other 

stemming studies, but is consistent with the hypothesis of Popovič and Willett [50] and Pirkola [49] that 

stemming should be particularly effective for languages with more complex morphology. 

The best stemmer was a light stemmer that removed stop words, definite articles, and و (“and”) from the 

beginning of words, and a small number of suffixes from the ends of words (light10). With query 

expansion, light10 yielded results comparable to that of the top performers at TREC, monolingual and 

cross-language.  We have now compared light stemming with several different stemming approaches 

based on morphological analysis: indexing roots returned by morphological analysis, indexing stems 

returned by morphological analysis, and somewhat more intelligent stemming based on part-of-speech 

assignments.  Although we can equal the light stemmer, we have not been able to attain significantly 

better performance using morphological analysis. 

Given the morphological complexity of Arabic, why would a morphological analyzer not perform better 

than such a simple stemmer?  We hypothesize several factors.  First, morphological analyzers make 

mistakes, particularly on names.  In dictionary-driven Buckwalter approach, words are exempted from 

stemming if they are not found in the lexicon.  With the Diab approach, we observed many mistakes 

tokenization in morphological analysis, which prevented words from getting the correct part of speech, 
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and therefore did not undergo the correct POS dependent modifications.  If one took at a sample of 

Arabic text with complete sentences, the tokenization and POS tagging would have fewer errors.  Note, 

however, that Arabic text contains so many definite articles that one could obtain the claimed >99% 

tokenization accuracy simply by removing Al from the beginnings of words.   

Second, models used in IR treat documents and queries as "bags of words," or at best, bags of unigrams, 

bigrams, and trigrams. Our current retrieval models may not be able to use the information provided by 

morphological analysis. 

Third, light stemming is robust.  It does not require complete sentences.  It does not try to handle every 

single case.  It is sufficient for information retrieval that many of the most frequently occurring forms of 

a word be conflated.  If an occasional form is missed, it is likely than other forms of the same word 

occur with it in the same documents, so the documents are likely to be retrieved anyway.  

Fourth, it is still not clear what the correct level of conflation should be for IR.  Clearly, we do not want 

to represent Arabic words by their roots, and equate all words derived from the same root.  But we still 

believe that light stemmers are too weak. None of the approaches here correctly groups broken plurals 

with their singular forms.  

These studies are only a beginning.  We have not ruled out the possibility that a better morphological 

analyzer, and better use of morphological analysis to conflate words, could work better than a light 

stemmer.  We have only tried a few obvious alternatives. Ultimately, one would like to be able to 

conflate all the inflected forms of a noun together, including broken plurals, and all the conjugations of a 

verb, which we cannot do today.  Clearly, there is room for future work that makes intelligent use of 

morphological analysis in information retrieval.   
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